Constants | |
---|---|
Gravity | $ g = -9.8 \frac{m}{s^2} $ |
Equations | |
---|---|
$ x = x_0 + v_0 t + \frac{1}{2}at^2 $ | |
$ v = \frac{Δs}{t} $ | |
$ a = \frac{Δv}{t} $ | |
$ v = v_0 + at $ | |
$ v^2 = v_0^2 + 2a( x - x_0 ) $ | |
$ \vec{a} ⋅ \vec{b} = |a| × |b| × cos(\theta) $ | |
$ \vec{a} × \vec{b} = a_x b_x + a_y b_y $ | |
$ |\vec{a}| = \sqrt{ a_x^2 + a_y^2 } $ | |
$ Δv = \frac{Δx}{t} $ | |
$ Δx = x_2 - x_1 $ | |
$ W = K_f - K_i $ | |
$ K = \frac{1}{2}mv^2 $ | |
$ W_g = -mg Δy $ |
Constants | |
---|---|
Vacuum permittivity | $ ε_0 = 8.9875517873681764 × 10^{-12} { F \over m } $ |
Mass of electron | $ 9.10938356 × 10^{-31} kg $ |
Mass of proton | $ 1.6726219 × 10^{-27} kg $ |
Coulomb's constant | $ k = 8.9875517873681764 × 10^9 { N m^2 \over C^2 } $ |
Elementary electric charge | $ 1.60217662 × 10^{19} \ C $ |
Equations |
---|
$$ F = ma = k \frac{{ q_1 q_2 }}{r^2} = Eq $$ |
$$ E = k \frac{q}{r^2} $$ |
$$ \tau = r F sin(\theta) $$ |
$$ E_{\text{ring}} = k \frac{qz}{{ z^2 + r^2 }^{\frac{3}{2}}} $$ |
$$ λ = \frac{q}{2 π r} $$ |
$$ σ = \frac{q}{π r^2} $$ |
$$ E_{\text{disk}} = 2 π k σ \left(\frac{1 - z}{\sqrt{z^2 + r^2}}\right) $$ |
$$ E_{\text{dipole}} = \frac{2 k q d}{z^3} $$ |
$$ Φ = \frac{q_{\text{enc}}}{ε_0} $$ |
$$ E_{\text{inf. rod}} = \frac{1}{2 π ε_0}\frac{λ}{d} $$ |
$$ E_{\text{inf. sheet}} = \frac{σ}{2 ε_0} $$ |